Рассчитать высоту треугольника со сторонами 134, 118 и 113

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{134 + 118 + 113}{2}} \normalsize = 182.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{182.5(182.5-134)(182.5-118)(182.5-113)}}{118}\normalsize = 106.763438}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{182.5(182.5-134)(182.5-118)(182.5-113)}}{134}\normalsize = 94.0155651}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{182.5(182.5-134)(182.5-118)(182.5-113)}}{113}\normalsize = 111.487484}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 134, 118 и 113 равна 106.763438
Высота треугольника опущенная с вершины A на сторону BC со сторонами 134, 118 и 113 равна 94.0155651
Высота треугольника опущенная с вершины C на сторону AB со сторонами 134, 118 и 113 равна 111.487484
Ссылка на результат
?n1=134&n2=118&n3=113