Рассчитать высоту треугольника со сторонами 134, 124 и 15
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{134 + 124 + 15}{2}} \normalsize = 136.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{136.5(136.5-134)(136.5-124)(136.5-15)}}{124}\normalsize = 11.6114855}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{136.5(136.5-134)(136.5-124)(136.5-15)}}{134}\normalsize = 10.7449568}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{136.5(136.5-134)(136.5-124)(136.5-15)}}{15}\normalsize = 95.9882805}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 134, 124 и 15 равна 11.6114855
Высота треугольника опущенная с вершины A на сторону BC со сторонами 134, 124 и 15 равна 10.7449568
Высота треугольника опущенная с вершины C на сторону AB со сторонами 134, 124 и 15 равна 95.9882805
Ссылка на результат
?n1=134&n2=124&n3=15
Найти высоту треугольника со сторонами 88, 88 и 75
Найти высоту треугольника со сторонами 113, 113 и 10
Найти высоту треугольника со сторонами 132, 114 и 73
Найти высоту треугольника со сторонами 34, 26 и 12
Найти высоту треугольника со сторонами 101, 92 и 47
Найти высоту треугольника со сторонами 116, 103 и 43
Найти высоту треугольника со сторонами 113, 113 и 10
Найти высоту треугольника со сторонами 132, 114 и 73
Найти высоту треугольника со сторонами 34, 26 и 12
Найти высоту треугольника со сторонами 101, 92 и 47
Найти высоту треугольника со сторонами 116, 103 и 43