Рассчитать высоту треугольника со сторонами 134, 126 и 50
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{134 + 126 + 50}{2}} \normalsize = 155}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{155(155-134)(155-126)(155-50)}}{126}\normalsize = 49.9722145}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{155(155-134)(155-126)(155-50)}}{134}\normalsize = 46.9887987}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{155(155-134)(155-126)(155-50)}}{50}\normalsize = 125.929981}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 134, 126 и 50 равна 49.9722145
Высота треугольника опущенная с вершины A на сторону BC со сторонами 134, 126 и 50 равна 46.9887987
Высота треугольника опущенная с вершины C на сторону AB со сторонами 134, 126 и 50 равна 125.929981
Ссылка на результат
?n1=134&n2=126&n3=50
Найти высоту треугольника со сторонами 148, 102 и 75
Найти высоту треугольника со сторонами 106, 101 и 36
Найти высоту треугольника со сторонами 145, 145 и 111
Найти высоту треугольника со сторонами 79, 77 и 61
Найти высоту треугольника со сторонами 140, 106 и 78
Найти высоту треугольника со сторонами 143, 124 и 53
Найти высоту треугольника со сторонами 106, 101 и 36
Найти высоту треугольника со сторонами 145, 145 и 111
Найти высоту треугольника со сторонами 79, 77 и 61
Найти высоту треугольника со сторонами 140, 106 и 78
Найти высоту треугольника со сторонами 143, 124 и 53