Рассчитать высоту треугольника со сторонами 134, 129 и 54
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{134 + 129 + 54}{2}} \normalsize = 158.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{158.5(158.5-134)(158.5-129)(158.5-54)}}{129}\normalsize = 53.6422658}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{158.5(158.5-134)(158.5-129)(158.5-54)}}{134}\normalsize = 51.6406887}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{158.5(158.5-134)(158.5-129)(158.5-54)}}{54}\normalsize = 128.145413}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 134, 129 и 54 равна 53.6422658
Высота треугольника опущенная с вершины A на сторону BC со сторонами 134, 129 и 54 равна 51.6406887
Высота треугольника опущенная с вершины C на сторону AB со сторонами 134, 129 и 54 равна 128.145413
Ссылка на результат
?n1=134&n2=129&n3=54
Найти высоту треугольника со сторонами 131, 118 и 48
Найти высоту треугольника со сторонами 145, 99 и 66
Найти высоту треугольника со сторонами 140, 139 и 43
Найти высоту треугольника со сторонами 118, 96 и 62
Найти высоту треугольника со сторонами 130, 126 и 73
Найти высоту треугольника со сторонами 140, 134 и 75
Найти высоту треугольника со сторонами 145, 99 и 66
Найти высоту треугольника со сторонами 140, 139 и 43
Найти высоту треугольника со сторонами 118, 96 и 62
Найти высоту треугольника со сторонами 130, 126 и 73
Найти высоту треугольника со сторонами 140, 134 и 75