Рассчитать высоту треугольника со сторонами 134, 134 и 10
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{134 + 134 + 10}{2}} \normalsize = 139}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{139(139-134)(139-134)(139-10)}}{134}\normalsize = 9.99303611}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{139(139-134)(139-134)(139-10)}}{134}\normalsize = 9.99303611}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{139(139-134)(139-134)(139-10)}}{10}\normalsize = 133.906684}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 134, 134 и 10 равна 9.99303611
Высота треугольника опущенная с вершины A на сторону BC со сторонами 134, 134 и 10 равна 9.99303611
Высота треугольника опущенная с вершины C на сторону AB со сторонами 134, 134 и 10 равна 133.906684
Ссылка на результат
?n1=134&n2=134&n3=10
Найти высоту треугольника со сторонами 142, 129 и 99
Найти высоту треугольника со сторонами 143, 121 и 113
Найти высоту треугольника со сторонами 135, 129 и 108
Найти высоту треугольника со сторонами 104, 96 и 62
Найти высоту треугольника со сторонами 67, 61 и 22
Найти высоту треугольника со сторонами 148, 128 и 64
Найти высоту треугольника со сторонами 143, 121 и 113
Найти высоту треугольника со сторонами 135, 129 и 108
Найти высоту треугольника со сторонами 104, 96 и 62
Найти высоту треугольника со сторонами 67, 61 и 22
Найти высоту треугольника со сторонами 148, 128 и 64