Рассчитать высоту треугольника со сторонами 134, 82 и 54
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{134 + 82 + 54}{2}} \normalsize = 135}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{135(135-134)(135-82)(135-54)}}{82}\normalsize = 18.5679292}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{135(135-134)(135-82)(135-54)}}{134}\normalsize = 11.3624641}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{135(135-134)(135-82)(135-54)}}{54}\normalsize = 28.1957444}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 134, 82 и 54 равна 18.5679292
Высота треугольника опущенная с вершины A на сторону BC со сторонами 134, 82 и 54 равна 11.3624641
Высота треугольника опущенная с вершины C на сторону AB со сторонами 134, 82 и 54 равна 28.1957444
Ссылка на результат
?n1=134&n2=82&n3=54
Найти высоту треугольника со сторонами 144, 113 и 75
Найти высоту треугольника со сторонами 111, 111 и 103
Найти высоту треугольника со сторонами 127, 100 и 63
Найти высоту треугольника со сторонами 124, 84 и 73
Найти высоту треугольника со сторонами 140, 136 и 108
Найти высоту треугольника со сторонами 140, 129 и 68
Найти высоту треугольника со сторонами 111, 111 и 103
Найти высоту треугольника со сторонами 127, 100 и 63
Найти высоту треугольника со сторонами 124, 84 и 73
Найти высоту треугольника со сторонами 140, 136 и 108
Найти высоту треугольника со сторонами 140, 129 и 68