Рассчитать высоту треугольника со сторонами 134, 86 и 65

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{134 + 86 + 65}{2}} \normalsize = 142.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{142.5(142.5-134)(142.5-86)(142.5-65)}}{86}\normalsize = 53.5578969}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{142.5(142.5-134)(142.5-86)(142.5-65)}}{134}\normalsize = 34.3729786}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{142.5(142.5-134)(142.5-86)(142.5-65)}}{65}\normalsize = 70.8612174}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 134, 86 и 65 равна 53.5578969
Высота треугольника опущенная с вершины A на сторону BC со сторонами 134, 86 и 65 равна 34.3729786
Высота треугольника опущенная с вершины C на сторону AB со сторонами 134, 86 и 65 равна 70.8612174
Ссылка на результат
?n1=134&n2=86&n3=65