Рассчитать высоту треугольника со сторонами 134, 87 и 75
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{134 + 87 + 75}{2}} \normalsize = 148}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{148(148-134)(148-87)(148-75)}}{87}\normalsize = 69.8283799}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{148(148-134)(148-87)(148-75)}}{134}\normalsize = 45.3363362}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{148(148-134)(148-87)(148-75)}}{75}\normalsize = 81.0009207}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 134, 87 и 75 равна 69.8283799
Высота треугольника опущенная с вершины A на сторону BC со сторонами 134, 87 и 75 равна 45.3363362
Высота треугольника опущенная с вершины C на сторону AB со сторонами 134, 87 и 75 равна 81.0009207
Ссылка на результат
?n1=134&n2=87&n3=75
Найти высоту треугольника со сторонами 120, 117 и 72
Найти высоту треугольника со сторонами 78, 71 и 66
Найти высоту треугольника со сторонами 142, 103 и 96
Найти высоту треугольника со сторонами 116, 102 и 38
Найти высоту треугольника со сторонами 113, 84 и 62
Найти высоту треугольника со сторонами 101, 82 и 66
Найти высоту треугольника со сторонами 78, 71 и 66
Найти высоту треугольника со сторонами 142, 103 и 96
Найти высоту треугольника со сторонами 116, 102 и 38
Найти высоту треугольника со сторонами 113, 84 и 62
Найти высоту треугольника со сторонами 101, 82 и 66