Рассчитать высоту треугольника со сторонами 134, 87 и 78
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{134 + 87 + 78}{2}} \normalsize = 149.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{149.5(149.5-134)(149.5-87)(149.5-78)}}{87}\normalsize = 73.9758933}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{149.5(149.5-134)(149.5-87)(149.5-78)}}{134}\normalsize = 48.0291247}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{149.5(149.5-134)(149.5-87)(149.5-78)}}{78}\normalsize = 82.5115733}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 134, 87 и 78 равна 73.9758933
Высота треугольника опущенная с вершины A на сторону BC со сторонами 134, 87 и 78 равна 48.0291247
Высота треугольника опущенная с вершины C на сторону AB со сторонами 134, 87 и 78 равна 82.5115733
Ссылка на результат
?n1=134&n2=87&n3=78
Найти высоту треугольника со сторонами 54, 51 и 10
Найти высоту треугольника со сторонами 99, 73 и 28
Найти высоту треугольника со сторонами 146, 125 и 113
Найти высоту треугольника со сторонами 149, 127 и 31
Найти высоту треугольника со сторонами 71, 69 и 50
Найти высоту треугольника со сторонами 129, 120 и 111
Найти высоту треугольника со сторонами 99, 73 и 28
Найти высоту треугольника со сторонами 146, 125 и 113
Найти высоту треугольника со сторонами 149, 127 и 31
Найти высоту треугольника со сторонами 71, 69 и 50
Найти высоту треугольника со сторонами 129, 120 и 111