Рассчитать высоту треугольника со сторонами 134, 89 и 53
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{134 + 89 + 53}{2}} \normalsize = 138}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{138(138-134)(138-89)(138-53)}}{89}\normalsize = 34.0735223}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{138(138-134)(138-89)(138-53)}}{134}\normalsize = 22.6309215}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{138(138-134)(138-89)(138-53)}}{53}\normalsize = 57.2178016}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 134, 89 и 53 равна 34.0735223
Высота треугольника опущенная с вершины A на сторону BC со сторонами 134, 89 и 53 равна 22.6309215
Высота треугольника опущенная с вершины C на сторону AB со сторонами 134, 89 и 53 равна 57.2178016
Ссылка на результат
?n1=134&n2=89&n3=53
Найти высоту треугольника со сторонами 84, 63 и 46
Найти высоту треугольника со сторонами 150, 127 и 60
Найти высоту треугольника со сторонами 74, 72 и 68
Найти высоту треугольника со сторонами 101, 77 и 61
Найти высоту треугольника со сторонами 149, 148 и 54
Найти высоту треугольника со сторонами 86, 72 и 38
Найти высоту треугольника со сторонами 150, 127 и 60
Найти высоту треугольника со сторонами 74, 72 и 68
Найти высоту треугольника со сторонами 101, 77 и 61
Найти высоту треугольника со сторонами 149, 148 и 54
Найти высоту треугольника со сторонами 86, 72 и 38