Рассчитать высоту треугольника со сторонами 134, 92 и 84

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{134 + 92 + 84}{2}} \normalsize = 155}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{155(155-134)(155-92)(155-84)}}{92}\normalsize = 82.9501382}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{155(155-134)(155-92)(155-84)}}{134}\normalsize = 56.9508411}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{155(155-134)(155-92)(155-84)}}{84}\normalsize = 90.8501513}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 134, 92 и 84 равна 82.9501382
Высота треугольника опущенная с вершины A на сторону BC со сторонами 134, 92 и 84 равна 56.9508411
Высота треугольника опущенная с вершины C на сторону AB со сторонами 134, 92 и 84 равна 90.8501513
Ссылка на результат
?n1=134&n2=92&n3=84