Рассчитать высоту треугольника со сторонами 134, 98 и 73
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{134 + 98 + 73}{2}} \normalsize = 152.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{152.5(152.5-134)(152.5-98)(152.5-73)}}{98}\normalsize = 71.3520609}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{152.5(152.5-134)(152.5-98)(152.5-73)}}{134}\normalsize = 52.1828505}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{152.5(152.5-134)(152.5-98)(152.5-73)}}{73}\normalsize = 95.7876982}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 134, 98 и 73 равна 71.3520609
Высота треугольника опущенная с вершины A на сторону BC со сторонами 134, 98 и 73 равна 52.1828505
Высота треугольника опущенная с вершины C на сторону AB со сторонами 134, 98 и 73 равна 95.7876982
Ссылка на результат
?n1=134&n2=98&n3=73
Найти высоту треугольника со сторонами 129, 83 и 76
Найти высоту треугольника со сторонами 134, 105 и 35
Найти высоту треугольника со сторонами 143, 112 и 104
Найти высоту треугольника со сторонами 123, 110 и 33
Найти высоту треугольника со сторонами 142, 131 и 69
Найти высоту треугольника со сторонами 120, 108 и 33
Найти высоту треугольника со сторонами 134, 105 и 35
Найти высоту треугольника со сторонами 143, 112 и 104
Найти высоту треугольника со сторонами 123, 110 и 33
Найти высоту треугольника со сторонами 142, 131 и 69
Найти высоту треугольника со сторонами 120, 108 и 33