Рассчитать высоту треугольника со сторонами 135, 107 и 87
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{135 + 107 + 87}{2}} \normalsize = 164.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{164.5(164.5-135)(164.5-107)(164.5-87)}}{107}\normalsize = 86.9210474}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{164.5(164.5-135)(164.5-107)(164.5-87)}}{135}\normalsize = 68.8929783}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{164.5(164.5-135)(164.5-107)(164.5-87)}}{87}\normalsize = 106.902897}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 135, 107 и 87 равна 86.9210474
Высота треугольника опущенная с вершины A на сторону BC со сторонами 135, 107 и 87 равна 68.8929783
Высота треугольника опущенная с вершины C на сторону AB со сторонами 135, 107 и 87 равна 106.902897
Ссылка на результат
?n1=135&n2=107&n3=87
Найти высоту треугольника со сторонами 142, 133 и 16
Найти высоту треугольника со сторонами 115, 97 и 28
Найти высоту треугольника со сторонами 129, 104 и 35
Найти высоту треугольника со сторонами 107, 80 и 58
Найти высоту треугольника со сторонами 109, 100 и 13
Найти высоту треугольника со сторонами 91, 80 и 17
Найти высоту треугольника со сторонами 115, 97 и 28
Найти высоту треугольника со сторонами 129, 104 и 35
Найти высоту треугольника со сторонами 107, 80 и 58
Найти высоту треугольника со сторонами 109, 100 и 13
Найти высоту треугольника со сторонами 91, 80 и 17