Рассчитать высоту треугольника со сторонами 135, 108 и 62
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{135 + 108 + 62}{2}} \normalsize = 152.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{152.5(152.5-135)(152.5-108)(152.5-62)}}{108}\normalsize = 60.7105939}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{152.5(152.5-135)(152.5-108)(152.5-62)}}{135}\normalsize = 48.5684751}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{152.5(152.5-135)(152.5-108)(152.5-62)}}{62}\normalsize = 105.753938}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 135, 108 и 62 равна 60.7105939
Высота треугольника опущенная с вершины A на сторону BC со сторонами 135, 108 и 62 равна 48.5684751
Высота треугольника опущенная с вершины C на сторону AB со сторонами 135, 108 и 62 равна 105.753938
Ссылка на результат
?n1=135&n2=108&n3=62
Найти высоту треугольника со сторонами 21, 13 и 11
Найти высоту треугольника со сторонами 137, 121 и 79
Найти высоту треугольника со сторонами 146, 109 и 100
Найти высоту треугольника со сторонами 96, 95 и 66
Найти высоту треугольника со сторонами 149, 102 и 99
Найти высоту треугольника со сторонами 105, 92 и 21
Найти высоту треугольника со сторонами 137, 121 и 79
Найти высоту треугольника со сторонами 146, 109 и 100
Найти высоту треугольника со сторонами 96, 95 и 66
Найти высоту треугольника со сторонами 149, 102 и 99
Найти высоту треугольника со сторонами 105, 92 и 21