Рассчитать высоту треугольника со сторонами 135, 111 и 54
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{135 + 111 + 54}{2}} \normalsize = 150}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{150(150-135)(150-111)(150-54)}}{111}\normalsize = 52.2957259}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{150(150-135)(150-111)(150-54)}}{135}\normalsize = 42.998708}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{150(150-135)(150-111)(150-54)}}{54}\normalsize = 107.49677}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 135, 111 и 54 равна 52.2957259
Высота треугольника опущенная с вершины A на сторону BC со сторонами 135, 111 и 54 равна 42.998708
Высота треугольника опущенная с вершины C на сторону AB со сторонами 135, 111 и 54 равна 107.49677
Ссылка на результат
?n1=135&n2=111&n3=54
Найти высоту треугольника со сторонами 146, 116 и 34
Найти высоту треугольника со сторонами 148, 127 и 67
Найти высоту треугольника со сторонами 101, 68 и 55
Найти высоту треугольника со сторонами 28, 27 и 23
Найти высоту треугольника со сторонами 118, 116 и 48
Найти высоту треугольника со сторонами 149, 93 и 91
Найти высоту треугольника со сторонами 148, 127 и 67
Найти высоту треугольника со сторонами 101, 68 и 55
Найти высоту треугольника со сторонами 28, 27 и 23
Найти высоту треугольника со сторонами 118, 116 и 48
Найти высоту треугольника со сторонами 149, 93 и 91