Рассчитать высоту треугольника со сторонами 135, 111 и 70
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{135 + 111 + 70}{2}} \normalsize = 158}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{158(158-135)(158-111)(158-70)}}{111}\normalsize = 69.8537529}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{158(158-135)(158-111)(158-70)}}{135}\normalsize = 57.4353079}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{158(158-135)(158-111)(158-70)}}{70}\normalsize = 110.768094}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 135, 111 и 70 равна 69.8537529
Высота треугольника опущенная с вершины A на сторону BC со сторонами 135, 111 и 70 равна 57.4353079
Высота треугольника опущенная с вершины C на сторону AB со сторонами 135, 111 и 70 равна 110.768094
Ссылка на результат
?n1=135&n2=111&n3=70
Найти высоту треугольника со сторонами 101, 98 и 96
Найти высоту треугольника со сторонами 107, 91 и 17
Найти высоту треугольника со сторонами 111, 100 и 66
Найти высоту треугольника со сторонами 142, 120 и 119
Найти высоту треугольника со сторонами 139, 130 и 113
Найти высоту треугольника со сторонами 88, 69 и 43
Найти высоту треугольника со сторонами 107, 91 и 17
Найти высоту треугольника со сторонами 111, 100 и 66
Найти высоту треугольника со сторонами 142, 120 и 119
Найти высоту треугольника со сторонами 139, 130 и 113
Найти высоту треугольника со сторонами 88, 69 и 43