Рассчитать высоту треугольника со сторонами 135, 116 и 105
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{135 + 116 + 105}{2}} \normalsize = 178}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{178(178-135)(178-116)(178-105)}}{116}\normalsize = 101.478376}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{178(178-135)(178-116)(178-105)}}{135}\normalsize = 87.1962345}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{178(178-135)(178-116)(178-105)}}{105}\normalsize = 112.109444}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 135, 116 и 105 равна 101.478376
Высота треугольника опущенная с вершины A на сторону BC со сторонами 135, 116 и 105 равна 87.1962345
Высота треугольника опущенная с вершины C на сторону AB со сторонами 135, 116 и 105 равна 112.109444
Ссылка на результат
?n1=135&n2=116&n3=105
Найти высоту треугольника со сторонами 133, 114 и 111
Найти высоту треугольника со сторонами 80, 53 и 52
Найти высоту треугольника со сторонами 139, 135 и 133
Найти высоту треугольника со сторонами 128, 87 и 43
Найти высоту треугольника со сторонами 139, 106 и 51
Найти высоту треугольника со сторонами 19, 10 и 10
Найти высоту треугольника со сторонами 80, 53 и 52
Найти высоту треугольника со сторонами 139, 135 и 133
Найти высоту треугольника со сторонами 128, 87 и 43
Найти высоту треугольника со сторонами 139, 106 и 51
Найти высоту треугольника со сторонами 19, 10 и 10