Рассчитать высоту треугольника со сторонами 135, 117 и 42
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{135 + 117 + 42}{2}} \normalsize = 147}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{147(147-135)(147-117)(147-42)}}{117}\normalsize = 40.2947719}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{147(147-135)(147-117)(147-42)}}{135}\normalsize = 34.9221356}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{147(147-135)(147-117)(147-42)}}{42}\normalsize = 112.249722}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 135, 117 и 42 равна 40.2947719
Высота треугольника опущенная с вершины A на сторону BC со сторонами 135, 117 и 42 равна 34.9221356
Высота треугольника опущенная с вершины C на сторону AB со сторонами 135, 117 и 42 равна 112.249722
Ссылка на результат
?n1=135&n2=117&n3=42
Найти высоту треугольника со сторонами 99, 73 и 31
Найти высоту треугольника со сторонами 102, 84 и 66
Найти высоту треугольника со сторонами 134, 89 и 64
Найти высоту треугольника со сторонами 45, 41 и 5
Найти высоту треугольника со сторонами 119, 99 и 33
Найти высоту треугольника со сторонами 61, 51 и 49
Найти высоту треугольника со сторонами 102, 84 и 66
Найти высоту треугольника со сторонами 134, 89 и 64
Найти высоту треугольника со сторонами 45, 41 и 5
Найти высоту треугольника со сторонами 119, 99 и 33
Найти высоту треугольника со сторонами 61, 51 и 49