Рассчитать высоту треугольника со сторонами 135, 117 и 82
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{135 + 117 + 82}{2}} \normalsize = 167}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{167(167-135)(167-117)(167-82)}}{117}\normalsize = 81.4651429}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{167(167-135)(167-117)(167-82)}}{135}\normalsize = 70.6031239}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{167(167-135)(167-117)(167-82)}}{82}\normalsize = 116.23685}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 135, 117 и 82 равна 81.4651429
Высота треугольника опущенная с вершины A на сторону BC со сторонами 135, 117 и 82 равна 70.6031239
Высота треугольника опущенная с вершины C на сторону AB со сторонами 135, 117 и 82 равна 116.23685
Ссылка на результат
?n1=135&n2=117&n3=82
Найти высоту треугольника со сторонами 66, 49 и 31
Найти высоту треугольника со сторонами 142, 129 и 49
Найти высоту треугольника со сторонами 62, 45 и 21
Найти высоту треугольника со сторонами 134, 134 и 76
Найти высоту треугольника со сторонами 42, 42 и 15
Найти высоту треугольника со сторонами 141, 99 и 96
Найти высоту треугольника со сторонами 142, 129 и 49
Найти высоту треугольника со сторонами 62, 45 и 21
Найти высоту треугольника со сторонами 134, 134 и 76
Найти высоту треугольника со сторонами 42, 42 и 15
Найти высоту треугольника со сторонами 141, 99 и 96