Рассчитать высоту треугольника со сторонами 135, 119 и 84
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{135 + 119 + 84}{2}} \normalsize = 169}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{169(169-135)(169-119)(169-84)}}{119}\normalsize = 83.0539534}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{169(169-135)(169-119)(169-84)}}{135}\normalsize = 73.2105219}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{169(169-135)(169-119)(169-84)}}{84}\normalsize = 117.659767}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 135, 119 и 84 равна 83.0539534
Высота треугольника опущенная с вершины A на сторону BC со сторонами 135, 119 и 84 равна 73.2105219
Высота треугольника опущенная с вершины C на сторону AB со сторонами 135, 119 и 84 равна 117.659767
Ссылка на результат
?n1=135&n2=119&n3=84
Найти высоту треугольника со сторонами 106, 93 и 61
Найти высоту треугольника со сторонами 95, 91 и 41
Найти высоту треугольника со сторонами 138, 134 и 110
Найти высоту треугольника со сторонами 141, 140 и 20
Найти высоту треугольника со сторонами 147, 139 и 37
Найти высоту треугольника со сторонами 121, 115 и 41
Найти высоту треугольника со сторонами 95, 91 и 41
Найти высоту треугольника со сторонами 138, 134 и 110
Найти высоту треугольника со сторонами 141, 140 и 20
Найти высоту треугольника со сторонами 147, 139 и 37
Найти высоту треугольника со сторонами 121, 115 и 41