Рассчитать высоту треугольника со сторонами 135, 121 и 33
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{135 + 121 + 33}{2}} \normalsize = 144.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{144.5(144.5-135)(144.5-121)(144.5-33)}}{121}\normalsize = 31.3481356}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{144.5(144.5-135)(144.5-121)(144.5-33)}}{135}\normalsize = 28.0972178}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{144.5(144.5-135)(144.5-121)(144.5-33)}}{33}\normalsize = 114.943164}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 135, 121 и 33 равна 31.3481356
Высота треугольника опущенная с вершины A на сторону BC со сторонами 135, 121 и 33 равна 28.0972178
Высота треугольника опущенная с вершины C на сторону AB со сторонами 135, 121 и 33 равна 114.943164
Ссылка на результат
?n1=135&n2=121&n3=33
Найти высоту треугольника со сторонами 102, 98 и 71
Найти высоту треугольника со сторонами 94, 58 и 52
Найти высоту треугольника со сторонами 81, 71 и 17
Найти высоту треугольника со сторонами 148, 113 и 111
Найти высоту треугольника со сторонами 144, 102 и 43
Найти высоту треугольника со сторонами 148, 142 и 49
Найти высоту треугольника со сторонами 94, 58 и 52
Найти высоту треугольника со сторонами 81, 71 и 17
Найти высоту треугольника со сторонами 148, 113 и 111
Найти высоту треугольника со сторонами 144, 102 и 43
Найти высоту треугольника со сторонами 148, 142 и 49