Рассчитать высоту треугольника со сторонами 135, 121 и 34
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{135 + 121 + 34}{2}} \normalsize = 145}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{145(145-135)(145-121)(145-34)}}{121}\normalsize = 32.4859624}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{145(145-135)(145-121)(145-34)}}{135}\normalsize = 29.1170477}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{145(145-135)(145-121)(145-34)}}{34}\normalsize = 115.611807}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 135, 121 и 34 равна 32.4859624
Высота треугольника опущенная с вершины A на сторону BC со сторонами 135, 121 и 34 равна 29.1170477
Высота треугольника опущенная с вершины C на сторону AB со сторонами 135, 121 и 34 равна 115.611807
Ссылка на результат
?n1=135&n2=121&n3=34
Найти высоту треугольника со сторонами 125, 124 и 78
Найти высоту треугольника со сторонами 68, 42 и 34
Найти высоту треугольника со сторонами 33, 27 и 26
Найти высоту треугольника со сторонами 145, 116 и 47
Найти высоту треугольника со сторонами 79, 51 и 48
Найти высоту треугольника со сторонами 132, 130 и 57
Найти высоту треугольника со сторонами 68, 42 и 34
Найти высоту треугольника со сторонами 33, 27 и 26
Найти высоту треугольника со сторонами 145, 116 и 47
Найти высоту треугольника со сторонами 79, 51 и 48
Найти высоту треугольника со сторонами 132, 130 и 57