Рассчитать высоту треугольника со сторонами 135, 123 и 63
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{135 + 123 + 63}{2}} \normalsize = 160.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{160.5(160.5-135)(160.5-123)(160.5-63)}}{123}\normalsize = 62.8999695}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{160.5(160.5-135)(160.5-123)(160.5-63)}}{135}\normalsize = 57.3088611}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{160.5(160.5-135)(160.5-123)(160.5-63)}}{63}\normalsize = 122.804702}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 135, 123 и 63 равна 62.8999695
Высота треугольника опущенная с вершины A на сторону BC со сторонами 135, 123 и 63 равна 57.3088611
Высота треугольника опущенная с вершины C на сторону AB со сторонами 135, 123 и 63 равна 122.804702
Ссылка на результат
?n1=135&n2=123&n3=63
Найти высоту треугольника со сторонами 131, 82 и 60
Найти высоту треугольника со сторонами 140, 121 и 64
Найти высоту треугольника со сторонами 141, 102 и 46
Найти высоту треугольника со сторонами 109, 109 и 23
Найти высоту треугольника со сторонами 100, 96 и 71
Найти высоту треугольника со сторонами 62, 42 и 42
Найти высоту треугольника со сторонами 140, 121 и 64
Найти высоту треугольника со сторонами 141, 102 и 46
Найти высоту треугольника со сторонами 109, 109 и 23
Найти высоту треугольника со сторонами 100, 96 и 71
Найти высоту треугольника со сторонами 62, 42 и 42