Рассчитать высоту треугольника со сторонами 135, 124 и 34
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{135 + 124 + 34}{2}} \normalsize = 146.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{146.5(146.5-135)(146.5-124)(146.5-34)}}{124}\normalsize = 33.3076171}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{146.5(146.5-135)(146.5-124)(146.5-34)}}{135}\normalsize = 30.5936631}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{146.5(146.5-135)(146.5-124)(146.5-34)}}{34}\normalsize = 121.474839}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 135, 124 и 34 равна 33.3076171
Высота треугольника опущенная с вершины A на сторону BC со сторонами 135, 124 и 34 равна 30.5936631
Высота треугольника опущенная с вершины C на сторону AB со сторонами 135, 124 и 34 равна 121.474839
Ссылка на результат
?n1=135&n2=124&n3=34
Найти высоту треугольника со сторонами 133, 82 и 62
Найти высоту треугольника со сторонами 114, 92 и 38
Найти высоту треугольника со сторонами 125, 111 и 81
Найти высоту треугольника со сторонами 131, 125 и 62
Найти высоту треугольника со сторонами 131, 98 и 51
Найти высоту треугольника со сторонами 133, 111 и 24
Найти высоту треугольника со сторонами 114, 92 и 38
Найти высоту треугольника со сторонами 125, 111 и 81
Найти высоту треугольника со сторонами 131, 125 и 62
Найти высоту треугольника со сторонами 131, 98 и 51
Найти высоту треугольника со сторонами 133, 111 и 24