Рассчитать высоту треугольника со сторонами 135, 127 и 42
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{135 + 127 + 42}{2}} \normalsize = 152}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{152(152-135)(152-127)(152-42)}}{127}\normalsize = 41.9796561}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{152(152-135)(152-127)(152-42)}}{135}\normalsize = 39.4919728}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{152(152-135)(152-127)(152-42)}}{42}\normalsize = 126.938484}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 135, 127 и 42 равна 41.9796561
Высота треугольника опущенная с вершины A на сторону BC со сторонами 135, 127 и 42 равна 39.4919728
Высота треугольника опущенная с вершины C на сторону AB со сторонами 135, 127 и 42 равна 126.938484
Ссылка на результат
?n1=135&n2=127&n3=42
Найти высоту треугольника со сторонами 119, 108 и 97
Найти высоту треугольника со сторонами 128, 119 и 98
Найти высоту треугольника со сторонами 138, 132 и 109
Найти высоту треугольника со сторонами 140, 135 и 18
Найти высоту треугольника со сторонами 103, 75 и 34
Найти высоту треугольника со сторонами 103, 85 и 21
Найти высоту треугольника со сторонами 128, 119 и 98
Найти высоту треугольника со сторонами 138, 132 и 109
Найти высоту треугольника со сторонами 140, 135 и 18
Найти высоту треугольника со сторонами 103, 75 и 34
Найти высоту треугольника со сторонами 103, 85 и 21