Рассчитать высоту треугольника со сторонами 135, 131 и 95
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{135 + 131 + 95}{2}} \normalsize = 180.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{180.5(180.5-135)(180.5-131)(180.5-95)}}{131}\normalsize = 90.0095641}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{180.5(180.5-135)(180.5-131)(180.5-95)}}{135}\normalsize = 87.342614}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{180.5(180.5-135)(180.5-131)(180.5-95)}}{95}\normalsize = 124.118451}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 135, 131 и 95 равна 90.0095641
Высота треугольника опущенная с вершины A на сторону BC со сторонами 135, 131 и 95 равна 87.342614
Высота треугольника опущенная с вершины C на сторону AB со сторонами 135, 131 и 95 равна 124.118451
Ссылка на результат
?n1=135&n2=131&n3=95
Найти высоту треугольника со сторонами 104, 102 и 39
Найти высоту треугольника со сторонами 120, 82 и 66
Найти высоту треугольника со сторонами 150, 101 и 83
Найти высоту треугольника со сторонами 141, 109 и 43
Найти высоту треугольника со сторонами 150, 114 и 82
Найти высоту треугольника со сторонами 76, 67 и 48
Найти высоту треугольника со сторонами 120, 82 и 66
Найти высоту треугольника со сторонами 150, 101 и 83
Найти высоту треугольника со сторонами 141, 109 и 43
Найти высоту треугольника со сторонами 150, 114 и 82
Найти высоту треугольника со сторонами 76, 67 и 48