Рассчитать высоту треугольника со сторонами 135, 133 и 25

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{135 + 133 + 25}{2}} \normalsize = 146.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{146.5(146.5-135)(146.5-133)(146.5-25)}}{133}\normalsize = 24.9977609}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{146.5(146.5-135)(146.5-133)(146.5-25)}}{135}\normalsize = 24.6274237}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{146.5(146.5-135)(146.5-133)(146.5-25)}}{25}\normalsize = 132.988088}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 135, 133 и 25 равна 24.9977609
Высота треугольника опущенная с вершины A на сторону BC со сторонами 135, 133 и 25 равна 24.6274237
Высота треугольника опущенная с вершины C на сторону AB со сторонами 135, 133 и 25 равна 132.988088
Ссылка на результат
?n1=135&n2=133&n3=25