Рассчитать высоту треугольника со сторонами 135, 134 и 39
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{135 + 134 + 39}{2}} \normalsize = 154}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{154(154-135)(154-134)(154-39)}}{134}\normalsize = 38.7191911}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{154(154-135)(154-134)(154-39)}}{135}\normalsize = 38.4323823}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{154(154-135)(154-134)(154-39)}}{39}\normalsize = 133.03517}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 135, 134 и 39 равна 38.7191911
Высота треугольника опущенная с вершины A на сторону BC со сторонами 135, 134 и 39 равна 38.4323823
Высота треугольника опущенная с вершины C на сторону AB со сторонами 135, 134 и 39 равна 133.03517
Ссылка на результат
?n1=135&n2=134&n3=39
Найти высоту треугольника со сторонами 135, 113 и 91
Найти высоту треугольника со сторонами 138, 137 и 73
Найти высоту треугольника со сторонами 111, 83 и 42
Найти высоту треугольника со сторонами 140, 83 и 79
Найти высоту треугольника со сторонами 131, 117 и 77
Найти высоту треугольника со сторонами 121, 79 и 64
Найти высоту треугольника со сторонами 138, 137 и 73
Найти высоту треугольника со сторонами 111, 83 и 42
Найти высоту треугольника со сторонами 140, 83 и 79
Найти высоту треугольника со сторонами 131, 117 и 77
Найти высоту треугольника со сторонами 121, 79 и 64