Рассчитать высоту треугольника со сторонами 135, 134 и 55
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{135 + 134 + 55}{2}} \normalsize = 162}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{162(162-135)(162-134)(162-55)}}{134}\normalsize = 54.0300651}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{162(162-135)(162-134)(162-55)}}{135}\normalsize = 53.6298424}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{162(162-135)(162-134)(162-55)}}{55}\normalsize = 131.636886}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 135, 134 и 55 равна 54.0300651
Высота треугольника опущенная с вершины A на сторону BC со сторонами 135, 134 и 55 равна 53.6298424
Высота треугольника опущенная с вершины C на сторону AB со сторонами 135, 134 и 55 равна 131.636886
Ссылка на результат
?n1=135&n2=134&n3=55
Найти высоту треугольника со сторонами 122, 121 и 62
Найти высоту треугольника со сторонами 64, 52 и 45
Найти высоту треугольника со сторонами 88, 63 и 62
Найти высоту треугольника со сторонами 109, 104 и 23
Найти высоту треугольника со сторонами 122, 97 и 34
Найти высоту треугольника со сторонами 37, 37 и 26
Найти высоту треугольника со сторонами 64, 52 и 45
Найти высоту треугольника со сторонами 88, 63 и 62
Найти высоту треугольника со сторонами 109, 104 и 23
Найти высоту треугольника со сторонами 122, 97 и 34
Найти высоту треугольника со сторонами 37, 37 и 26