Рассчитать высоту треугольника со сторонами 135, 134 и 69
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{135 + 134 + 69}{2}} \normalsize = 169}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{169(169-135)(169-134)(169-69)}}{134}\normalsize = 66.9332681}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{169(169-135)(169-134)(169-69)}}{135}\normalsize = 66.4374661}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{169(169-135)(169-134)(169-69)}}{69}\normalsize = 129.986347}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 135, 134 и 69 равна 66.9332681
Высота треугольника опущенная с вершины A на сторону BC со сторонами 135, 134 и 69 равна 66.4374661
Высота треугольника опущенная с вершины C на сторону AB со сторонами 135, 134 и 69 равна 129.986347
Ссылка на результат
?n1=135&n2=134&n3=69
Найти высоту треугольника со сторонами 114, 113 и 107
Найти высоту треугольника со сторонами 102, 66 и 62
Найти высоту треугольника со сторонами 58, 48 и 46
Найти высоту треугольника со сторонами 96, 84 и 45
Найти высоту треугольника со сторонами 117, 106 и 17
Найти высоту треугольника со сторонами 99, 75 и 37
Найти высоту треугольника со сторонами 102, 66 и 62
Найти высоту треугольника со сторонами 58, 48 и 46
Найти высоту треугольника со сторонами 96, 84 и 45
Найти высоту треугольника со сторонами 117, 106 и 17
Найти высоту треугольника со сторонами 99, 75 и 37