Рассчитать высоту треугольника со сторонами 135, 82 и 63
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{135 + 82 + 63}{2}} \normalsize = 140}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{140(140-135)(140-82)(140-63)}}{82}\normalsize = 43.1245447}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{140(140-135)(140-82)(140-63)}}{135}\normalsize = 26.1941679}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{140(140-135)(140-82)(140-63)}}{63}\normalsize = 56.1303597}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 135, 82 и 63 равна 43.1245447
Высота треугольника опущенная с вершины A на сторону BC со сторонами 135, 82 и 63 равна 26.1941679
Высота треугольника опущенная с вершины C на сторону AB со сторонами 135, 82 и 63 равна 56.1303597
Ссылка на результат
?n1=135&n2=82&n3=63
Найти высоту треугольника со сторонами 40, 28 и 26
Найти высоту треугольника со сторонами 139, 135 и 21
Найти высоту треугольника со сторонами 97, 69 и 67
Найти высоту треугольника со сторонами 80, 51 и 49
Найти высоту треугольника со сторонами 69, 64 и 41
Найти высоту треугольника со сторонами 45, 45 и 6
Найти высоту треугольника со сторонами 139, 135 и 21
Найти высоту треугольника со сторонами 97, 69 и 67
Найти высоту треугольника со сторонами 80, 51 и 49
Найти высоту треугольника со сторонами 69, 64 и 41
Найти высоту треугольника со сторонами 45, 45 и 6