Рассчитать высоту треугольника со сторонами 135, 85 и 61
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{135 + 85 + 61}{2}} \normalsize = 140.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{140.5(140.5-135)(140.5-85)(140.5-61)}}{85}\normalsize = 43.4470839}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{140.5(140.5-135)(140.5-85)(140.5-61)}}{135}\normalsize = 27.3555714}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{140.5(140.5-135)(140.5-85)(140.5-61)}}{61}\normalsize = 60.5410186}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 135, 85 и 61 равна 43.4470839
Высота треугольника опущенная с вершины A на сторону BC со сторонами 135, 85 и 61 равна 27.3555714
Высота треугольника опущенная с вершины C на сторону AB со сторонами 135, 85 и 61 равна 60.5410186
Ссылка на результат
?n1=135&n2=85&n3=61
Найти высоту треугольника со сторонами 36, 35 и 18
Найти высоту треугольника со сторонами 105, 98 и 95
Найти высоту треугольника со сторонами 146, 133 и 33
Найти высоту треугольника со сторонами 140, 108 и 42
Найти высоту треугольника со сторонами 145, 96 и 76
Найти высоту треугольника со сторонами 136, 118 и 118
Найти высоту треугольника со сторонами 105, 98 и 95
Найти высоту треугольника со сторонами 146, 133 и 33
Найти высоту треугольника со сторонами 140, 108 и 42
Найти высоту треугольника со сторонами 145, 96 и 76
Найти высоту треугольника со сторонами 136, 118 и 118