Рассчитать высоту треугольника со сторонами 135, 94 и 81
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{135 + 94 + 81}{2}} \normalsize = 155}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{155(155-135)(155-94)(155-81)}}{94}\normalsize = 79.5909643}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{155(155-135)(155-94)(155-81)}}{135}\normalsize = 55.4188936}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{155(155-135)(155-94)(155-81)}}{81}\normalsize = 92.3648227}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 135, 94 и 81 равна 79.5909643
Высота треугольника опущенная с вершины A на сторону BC со сторонами 135, 94 и 81 равна 55.4188936
Высота треугольника опущенная с вершины C на сторону AB со сторонами 135, 94 и 81 равна 92.3648227
Ссылка на результат
?n1=135&n2=94&n3=81
Найти высоту треугольника со сторонами 144, 139 и 37
Найти высоту треугольника со сторонами 146, 135 и 100
Найти высоту треугольника со сторонами 104, 65 и 55
Найти высоту треугольника со сторонами 147, 124 и 81
Найти высоту треугольника со сторонами 96, 87 и 70
Найти высоту треугольника со сторонами 36, 35 и 19
Найти высоту треугольника со сторонами 146, 135 и 100
Найти высоту треугольника со сторонами 104, 65 и 55
Найти высоту треугольника со сторонами 147, 124 и 81
Найти высоту треугольника со сторонами 96, 87 и 70
Найти высоту треугольника со сторонами 36, 35 и 19