Рассчитать высоту треугольника со сторонами 135, 95 и 93
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{135 + 95 + 93}{2}} \normalsize = 161.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{161.5(161.5-135)(161.5-95)(161.5-93)}}{95}\normalsize = 92.9547739}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{161.5(161.5-135)(161.5-95)(161.5-93)}}{135}\normalsize = 65.4126187}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{161.5(161.5-135)(161.5-95)(161.5-93)}}{93}\normalsize = 94.9538013}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 135, 95 и 93 равна 92.9547739
Высота треугольника опущенная с вершины A на сторону BC со сторонами 135, 95 и 93 равна 65.4126187
Высота треугольника опущенная с вершины C на сторону AB со сторонами 135, 95 и 93 равна 94.9538013
Ссылка на результат
?n1=135&n2=95&n3=93
Найти высоту треугольника со сторонами 116, 82 и 42
Найти высоту треугольника со сторонами 101, 90 и 83
Найти высоту треугольника со сторонами 133, 132 и 78
Найти высоту треугольника со сторонами 111, 87 и 29
Найти высоту треугольника со сторонами 64, 64 и 41
Найти высоту треугольника со сторонами 140, 131 и 55
Найти высоту треугольника со сторонами 101, 90 и 83
Найти высоту треугольника со сторонами 133, 132 и 78
Найти высоту треугольника со сторонами 111, 87 и 29
Найти высоту треугольника со сторонами 64, 64 и 41
Найти высоту треугольника со сторонами 140, 131 и 55