Рассчитать высоту треугольника со сторонами 136, 104 и 83
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{136 + 104 + 83}{2}} \normalsize = 161.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{161.5(161.5-136)(161.5-104)(161.5-83)}}{104}\normalsize = 82.9128342}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{161.5(161.5-136)(161.5-104)(161.5-83)}}{136}\normalsize = 63.403932}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{161.5(161.5-136)(161.5-104)(161.5-83)}}{83}\normalsize = 103.89078}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 136, 104 и 83 равна 82.9128342
Высота треугольника опущенная с вершины A на сторону BC со сторонами 136, 104 и 83 равна 63.403932
Высота треугольника опущенная с вершины C на сторону AB со сторонами 136, 104 и 83 равна 103.89078
Ссылка на результат
?n1=136&n2=104&n3=83
Найти высоту треугольника со сторонами 71, 61 и 48
Найти высоту треугольника со сторонами 120, 94 и 91
Найти высоту треугольника со сторонами 112, 112 и 64
Найти высоту треугольника со сторонами 128, 92 и 56
Найти высоту треугольника со сторонами 73, 57 и 25
Найти высоту треугольника со сторонами 140, 100 и 63
Найти высоту треугольника со сторонами 120, 94 и 91
Найти высоту треугольника со сторонами 112, 112 и 64
Найти высоту треугольника со сторонами 128, 92 и 56
Найти высоту треугольника со сторонами 73, 57 и 25
Найти высоту треугольника со сторонами 140, 100 и 63