Рассчитать высоту треугольника со сторонами 136, 109 и 95
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{136 + 109 + 95}{2}} \normalsize = 170}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{170(170-136)(170-109)(170-95)}}{109}\normalsize = 94.3545757}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{170(170-136)(170-109)(170-95)}}{136}\normalsize = 75.6224173}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{170(170-136)(170-109)(170-95)}}{95}\normalsize = 108.259461}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 136, 109 и 95 равна 94.3545757
Высота треугольника опущенная с вершины A на сторону BC со сторонами 136, 109 и 95 равна 75.6224173
Высота треугольника опущенная с вершины C на сторону AB со сторонами 136, 109 и 95 равна 108.259461
Ссылка на результат
?n1=136&n2=109&n3=95
Найти высоту треугольника со сторонами 99, 78 и 34
Найти высоту треугольника со сторонами 114, 88 и 88
Найти высоту треугольника со сторонами 118, 91 и 45
Найти высоту треугольника со сторонами 105, 85 и 68
Найти высоту треугольника со сторонами 80, 62 и 26
Найти высоту треугольника со сторонами 145, 107 и 46
Найти высоту треугольника со сторонами 114, 88 и 88
Найти высоту треугольника со сторонами 118, 91 и 45
Найти высоту треугольника со сторонами 105, 85 и 68
Найти высоту треугольника со сторонами 80, 62 и 26
Найти высоту треугольника со сторонами 145, 107 и 46