Рассчитать высоту треугольника со сторонами 136, 110 и 107

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{136 + 110 + 107}{2}} \normalsize = 176.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{176.5(176.5-136)(176.5-110)(176.5-107)}}{110}\normalsize = 104.505802}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{176.5(176.5-136)(176.5-110)(176.5-107)}}{136}\normalsize = 84.5267515}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{176.5(176.5-136)(176.5-110)(176.5-107)}}{107}\normalsize = 107.435871}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 136, 110 и 107 равна 104.505802
Высота треугольника опущенная с вершины A на сторону BC со сторонами 136, 110 и 107 равна 84.5267515
Высота треугольника опущенная с вершины C на сторону AB со сторонами 136, 110 и 107 равна 107.435871
Ссылка на результат
?n1=136&n2=110&n3=107