Рассчитать высоту треугольника со сторонами 136, 113 и 32

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{136 + 113 + 32}{2}} \normalsize = 140.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{140.5(140.5-136)(140.5-113)(140.5-32)}}{113}\normalsize = 24.309565}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{140.5(140.5-136)(140.5-113)(140.5-32)}}{136}\normalsize = 20.1983885}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{140.5(140.5-136)(140.5-113)(140.5-32)}}{32}\normalsize = 85.8431513}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 136, 113 и 32 равна 24.309565
Высота треугольника опущенная с вершины A на сторону BC со сторонами 136, 113 и 32 равна 20.1983885
Высота треугольника опущенная с вершины C на сторону AB со сторонами 136, 113 и 32 равна 85.8431513
Ссылка на результат
?n1=136&n2=113&n3=32