Рассчитать высоту треугольника со сторонами 136, 115 и 106
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{136 + 115 + 106}{2}} \normalsize = 178.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{178.5(178.5-136)(178.5-115)(178.5-106)}}{115}\normalsize = 102.778339}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{178.5(178.5-136)(178.5-115)(178.5-106)}}{136}\normalsize = 86.9081546}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{178.5(178.5-136)(178.5-115)(178.5-106)}}{106}\normalsize = 111.504802}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 136, 115 и 106 равна 102.778339
Высота треугольника опущенная с вершины A на сторону BC со сторонами 136, 115 и 106 равна 86.9081546
Высота треугольника опущенная с вершины C на сторону AB со сторонами 136, 115 и 106 равна 111.504802
Ссылка на результат
?n1=136&n2=115&n3=106
Найти высоту треугольника со сторонами 106, 97 и 25
Найти высоту треугольника со сторонами 122, 121 и 77
Найти высоту треугольника со сторонами 122, 110 и 98
Найти высоту треугольника со сторонами 114, 110 и 52
Найти высоту треугольника со сторонами 150, 118 и 40
Найти высоту треугольника со сторонами 130, 100 и 83
Найти высоту треугольника со сторонами 122, 121 и 77
Найти высоту треугольника со сторонами 122, 110 и 98
Найти высоту треугольника со сторонами 114, 110 и 52
Найти высоту треугольника со сторонами 150, 118 и 40
Найти высоту треугольника со сторонами 130, 100 и 83