Рассчитать высоту треугольника со сторонами 136, 115 и 109
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{136 + 115 + 109}{2}} \normalsize = 180}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{180(180-136)(180-115)(180-109)}}{115}\normalsize = 105.143057}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{180(180-136)(180-115)(180-109)}}{136}\normalsize = 88.9077318}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{180(180-136)(180-115)(180-109)}}{109}\normalsize = 110.930748}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 136, 115 и 109 равна 105.143057
Высота треугольника опущенная с вершины A на сторону BC со сторонами 136, 115 и 109 равна 88.9077318
Высота треугольника опущенная с вершины C на сторону AB со сторонами 136, 115 и 109 равна 110.930748
Ссылка на результат
?n1=136&n2=115&n3=109
Найти высоту треугольника со сторонами 90, 64 и 44
Найти высоту треугольника со сторонами 100, 96 и 55
Найти высоту треугольника со сторонами 121, 121 и 27
Найти высоту треугольника со сторонами 127, 88 и 79
Найти высоту треугольника со сторонами 99, 52 и 49
Найти высоту треугольника со сторонами 104, 86 и 47
Найти высоту треугольника со сторонами 100, 96 и 55
Найти высоту треугольника со сторонами 121, 121 и 27
Найти высоту треугольника со сторонами 127, 88 и 79
Найти высоту треугольника со сторонами 99, 52 и 49
Найти высоту треугольника со сторонами 104, 86 и 47