Рассчитать высоту треугольника со сторонами 136, 115 и 47
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{136 + 115 + 47}{2}} \normalsize = 149}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{149(149-136)(149-115)(149-47)}}{115}\normalsize = 45.0750804}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{149(149-136)(149-115)(149-47)}}{136}\normalsize = 38.1149577}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{149(149-136)(149-115)(149-47)}}{47}\normalsize = 110.29009}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 136, 115 и 47 равна 45.0750804
Высота треугольника опущенная с вершины A на сторону BC со сторонами 136, 115 и 47 равна 38.1149577
Высота треугольника опущенная с вершины C на сторону AB со сторонами 136, 115 и 47 равна 110.29009
Ссылка на результат
?n1=136&n2=115&n3=47
Найти высоту треугольника со сторонами 101, 101 и 32
Найти высоту треугольника со сторонами 103, 82 и 55
Найти высоту треугольника со сторонами 123, 122 и 56
Найти высоту треугольника со сторонами 120, 96 и 75
Найти высоту треугольника со сторонами 89, 86 и 83
Найти высоту треугольника со сторонами 31, 26 и 19
Найти высоту треугольника со сторонами 103, 82 и 55
Найти высоту треугольника со сторонами 123, 122 и 56
Найти высоту треугольника со сторонами 120, 96 и 75
Найти высоту треугольника со сторонами 89, 86 и 83
Найти высоту треугольника со сторонами 31, 26 и 19