Рассчитать высоту треугольника со сторонами 136, 118 и 23
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{136 + 118 + 23}{2}} \normalsize = 138.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{138.5(138.5-136)(138.5-118)(138.5-23)}}{118}\normalsize = 15.3465515}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{138.5(138.5-136)(138.5-118)(138.5-23)}}{136}\normalsize = 13.3153903}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{138.5(138.5-136)(138.5-118)(138.5-23)}}{23}\normalsize = 78.7344818}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 136, 118 и 23 равна 15.3465515
Высота треугольника опущенная с вершины A на сторону BC со сторонами 136, 118 и 23 равна 13.3153903
Высота треугольника опущенная с вершины C на сторону AB со сторонами 136, 118 и 23 равна 78.7344818
Ссылка на результат
?n1=136&n2=118&n3=23
Найти высоту треугольника со сторонами 127, 94 и 86
Найти высоту треугольника со сторонами 141, 110 и 100
Найти высоту треугольника со сторонами 130, 99 и 60
Найти высоту треугольника со сторонами 128, 118 и 55
Найти высоту треугольника со сторонами 25, 24 и 14
Найти высоту треугольника со сторонами 111, 101 и 12
Найти высоту треугольника со сторонами 141, 110 и 100
Найти высоту треугольника со сторонами 130, 99 и 60
Найти высоту треугольника со сторонами 128, 118 и 55
Найти высоту треугольника со сторонами 25, 24 и 14
Найти высоту треугольника со сторонами 111, 101 и 12