Рассчитать высоту треугольника со сторонами 136, 119 и 30
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{136 + 119 + 30}{2}} \normalsize = 142.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{142.5(142.5-136)(142.5-119)(142.5-30)}}{119}\normalsize = 26.3000962}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{142.5(142.5-136)(142.5-119)(142.5-30)}}{136}\normalsize = 23.0125842}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{142.5(142.5-136)(142.5-119)(142.5-30)}}{30}\normalsize = 104.323715}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 136, 119 и 30 равна 26.3000962
Высота треугольника опущенная с вершины A на сторону BC со сторонами 136, 119 и 30 равна 23.0125842
Высота треугольника опущенная с вершины C на сторону AB со сторонами 136, 119 и 30 равна 104.323715
Ссылка на результат
?n1=136&n2=119&n3=30
Найти высоту треугольника со сторонами 126, 121 и 39
Найти высоту треугольника со сторонами 128, 105 и 78
Найти высоту треугольника со сторонами 107, 102 и 102
Найти высоту треугольника со сторонами 139, 135 и 64
Найти высоту треугольника со сторонами 141, 128 и 123
Найти высоту треугольника со сторонами 108, 70 и 59
Найти высоту треугольника со сторонами 128, 105 и 78
Найти высоту треугольника со сторонами 107, 102 и 102
Найти высоту треугольника со сторонами 139, 135 и 64
Найти высоту треугольника со сторонами 141, 128 и 123
Найти высоту треугольника со сторонами 108, 70 и 59