Рассчитать высоту треугольника со сторонами 136, 123 и 49
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{136 + 123 + 49}{2}} \normalsize = 154}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{154(154-136)(154-123)(154-49)}}{123}\normalsize = 48.8423997}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{154(154-136)(154-123)(154-49)}}{136}\normalsize = 44.1736409}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{154(154-136)(154-123)(154-49)}}{49}\normalsize = 122.604391}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 136, 123 и 49 равна 48.8423997
Высота треугольника опущенная с вершины A на сторону BC со сторонами 136, 123 и 49 равна 44.1736409
Высота треугольника опущенная с вершины C на сторону AB со сторонами 136, 123 и 49 равна 122.604391
Ссылка на результат
?n1=136&n2=123&n3=49
Найти высоту треугольника со сторонами 122, 79 и 73
Найти высоту треугольника со сторонами 143, 127 и 122
Найти высоту треугольника со сторонами 133, 109 и 42
Найти высоту треугольника со сторонами 138, 112 и 86
Найти высоту треугольника со сторонами 117, 106 и 12
Найти высоту треугольника со сторонами 107, 73 и 60
Найти высоту треугольника со сторонами 143, 127 и 122
Найти высоту треугольника со сторонами 133, 109 и 42
Найти высоту треугольника со сторонами 138, 112 и 86
Найти высоту треугольника со сторонами 117, 106 и 12
Найти высоту треугольника со сторонами 107, 73 и 60