Рассчитать высоту треугольника со сторонами 136, 124 и 60
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{136 + 124 + 60}{2}} \normalsize = 160}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{160(160-136)(160-124)(160-60)}}{124}\normalsize = 59.9687744}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{160(160-136)(160-124)(160-60)}}{136}\normalsize = 54.6774119}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{160(160-136)(160-124)(160-60)}}{60}\normalsize = 123.935467}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 136, 124 и 60 равна 59.9687744
Высота треугольника опущенная с вершины A на сторону BC со сторонами 136, 124 и 60 равна 54.6774119
Высота треугольника опущенная с вершины C на сторону AB со сторонами 136, 124 и 60 равна 123.935467
Ссылка на результат
?n1=136&n2=124&n3=60
Найти высоту треугольника со сторонами 137, 75 и 67
Найти высоту треугольника со сторонами 39, 26 и 17
Найти высоту треугольника со сторонами 8, 5 и 5
Найти высоту треугольника со сторонами 74, 53 и 24
Найти высоту треугольника со сторонами 119, 103 и 92
Найти высоту треугольника со сторонами 132, 129 и 12
Найти высоту треугольника со сторонами 39, 26 и 17
Найти высоту треугольника со сторонами 8, 5 и 5
Найти высоту треугольника со сторонами 74, 53 и 24
Найти высоту треугольника со сторонами 119, 103 и 92
Найти высоту треугольника со сторонами 132, 129 и 12