Рассчитать высоту треугольника со сторонами 136, 124 и 65
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{136 + 124 + 65}{2}} \normalsize = 162.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{162.5(162.5-136)(162.5-124)(162.5-65)}}{124}\normalsize = 64.8471065}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{162.5(162.5-136)(162.5-124)(162.5-65)}}{136}\normalsize = 59.125303}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{162.5(162.5-136)(162.5-124)(162.5-65)}}{65}\normalsize = 123.708326}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 136, 124 и 65 равна 64.8471065
Высота треугольника опущенная с вершины A на сторону BC со сторонами 136, 124 и 65 равна 59.125303
Высота треугольника опущенная с вершины C на сторону AB со сторонами 136, 124 и 65 равна 123.708326
Ссылка на результат
?n1=136&n2=124&n3=65
Найти высоту треугольника со сторонами 118, 112 и 46
Найти высоту треугольника со сторонами 103, 93 и 78
Найти высоту треугольника со сторонами 25, 21 и 12
Найти высоту треугольника со сторонами 92, 76 и 57
Найти высоту треугольника со сторонами 83, 75 и 14
Найти высоту треугольника со сторонами 61, 53 и 16
Найти высоту треугольника со сторонами 103, 93 и 78
Найти высоту треугольника со сторонами 25, 21 и 12
Найти высоту треугольника со сторонами 92, 76 и 57
Найти высоту треугольника со сторонами 83, 75 и 14
Найти высоту треугольника со сторонами 61, 53 и 16