Рассчитать высоту треугольника со сторонами 136, 126 и 35
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{136 + 126 + 35}{2}} \normalsize = 148.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{148.5(148.5-136)(148.5-126)(148.5-35)}}{126}\normalsize = 34.5594541}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{148.5(148.5-136)(148.5-126)(148.5-35)}}{136}\normalsize = 32.0183178}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{148.5(148.5-136)(148.5-126)(148.5-35)}}{35}\normalsize = 124.414035}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 136, 126 и 35 равна 34.5594541
Высота треугольника опущенная с вершины A на сторону BC со сторонами 136, 126 и 35 равна 32.0183178
Высота треугольника опущенная с вершины C на сторону AB со сторонами 136, 126 и 35 равна 124.414035
Ссылка на результат
?n1=136&n2=126&n3=35
Найти высоту треугольника со сторонами 123, 91 и 81
Найти высоту треугольника со сторонами 84, 71 и 52
Найти высоту треугольника со сторонами 94, 84 и 75
Найти высоту треугольника со сторонами 135, 115 и 29
Найти высоту треугольника со сторонами 103, 102 и 57
Найти высоту треугольника со сторонами 146, 112 и 106
Найти высоту треугольника со сторонами 84, 71 и 52
Найти высоту треугольника со сторонами 94, 84 и 75
Найти высоту треугольника со сторонами 135, 115 и 29
Найти высоту треугольника со сторонами 103, 102 и 57
Найти высоту треугольника со сторонами 146, 112 и 106