Рассчитать высоту треугольника со сторонами 136, 131 и 42
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{136 + 131 + 42}{2}} \normalsize = 154.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{154.5(154.5-136)(154.5-131)(154.5-42)}}{131}\normalsize = 41.9680701}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{154.5(154.5-136)(154.5-131)(154.5-42)}}{136}\normalsize = 40.4251263}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{154.5(154.5-136)(154.5-131)(154.5-42)}}{42}\normalsize = 130.900409}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 136, 131 и 42 равна 41.9680701
Высота треугольника опущенная с вершины A на сторону BC со сторонами 136, 131 и 42 равна 40.4251263
Высота треугольника опущенная с вершины C на сторону AB со сторонами 136, 131 и 42 равна 130.900409
Ссылка на результат
?n1=136&n2=131&n3=42
Найти высоту треугольника со сторонами 117, 101 и 53
Найти высоту треугольника со сторонами 141, 138 и 120
Найти высоту треугольника со сторонами 138, 111 и 55
Найти высоту треугольника со сторонами 109, 104 и 99
Найти высоту треугольника со сторонами 112, 110 и 84
Найти высоту треугольника со сторонами 106, 70 и 50
Найти высоту треугольника со сторонами 141, 138 и 120
Найти высоту треугольника со сторонами 138, 111 и 55
Найти высоту треугольника со сторонами 109, 104 и 99
Найти высоту треугольника со сторонами 112, 110 и 84
Найти высоту треугольника со сторонами 106, 70 и 50