Рассчитать высоту треугольника со сторонами 136, 80 и 73
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{136 + 80 + 73}{2}} \normalsize = 144.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{144.5(144.5-136)(144.5-80)(144.5-73)}}{80}\normalsize = 59.4999051}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{144.5(144.5-136)(144.5-80)(144.5-73)}}{136}\normalsize = 34.9999442}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{144.5(144.5-136)(144.5-80)(144.5-73)}}{73}\normalsize = 65.2053755}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 136, 80 и 73 равна 59.4999051
Высота треугольника опущенная с вершины A на сторону BC со сторонами 136, 80 и 73 равна 34.9999442
Высота треугольника опущенная с вершины C на сторону AB со сторонами 136, 80 и 73 равна 65.2053755
Ссылка на результат
?n1=136&n2=80&n3=73
Найти высоту треугольника со сторонами 132, 81 и 75
Найти высоту треугольника со сторонами 75, 65 и 45
Найти высоту треугольника со сторонами 139, 107 и 69
Найти высоту треугольника со сторонами 100, 87 и 49
Найти высоту треугольника со сторонами 89, 69 и 60
Найти высоту треугольника со сторонами 52, 48 и 18
Найти высоту треугольника со сторонами 75, 65 и 45
Найти высоту треугольника со сторонами 139, 107 и 69
Найти высоту треугольника со сторонами 100, 87 и 49
Найти высоту треугольника со сторонами 89, 69 и 60
Найти высоту треугольника со сторонами 52, 48 и 18