Рассчитать высоту треугольника со сторонами 136, 86 и 83
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{136 + 86 + 83}{2}} \normalsize = 152.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{152.5(152.5-136)(152.5-86)(152.5-83)}}{86}\normalsize = 79.3070258}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{152.5(152.5-136)(152.5-86)(152.5-83)}}{136}\normalsize = 50.150031}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{152.5(152.5-136)(152.5-86)(152.5-83)}}{83}\normalsize = 82.1735448}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 136, 86 и 83 равна 79.3070258
Высота треугольника опущенная с вершины A на сторону BC со сторонами 136, 86 и 83 равна 50.150031
Высота треугольника опущенная с вершины C на сторону AB со сторонами 136, 86 и 83 равна 82.1735448
Ссылка на результат
?n1=136&n2=86&n3=83
Найти высоту треугольника со сторонами 135, 125 и 121
Найти высоту треугольника со сторонами 76, 74 и 74
Найти высоту треугольника со сторонами 128, 112 и 49
Найти высоту треугольника со сторонами 136, 135 и 91
Найти высоту треугольника со сторонами 88, 84 и 56
Найти высоту треугольника со сторонами 134, 124 и 78
Найти высоту треугольника со сторонами 76, 74 и 74
Найти высоту треугольника со сторонами 128, 112 и 49
Найти высоту треугольника со сторонами 136, 135 и 91
Найти высоту треугольника со сторонами 88, 84 и 56
Найти высоту треугольника со сторонами 134, 124 и 78